A novel kind of AKNS integrable couplings and their Hamiltonian structures
نویسندگان
چکیده
منابع مشابه
Nonlinear bi-integrable couplings with Hamiltonian structures
Bi-integrable couplings of soliton equations are presented through introducing non-semisimple matrix Lie algebras on which there exist non-degenerate, symmetric and ad-invariant bilinear forms. The corresponding variational identity yields Hamiltonian structures of the resulting bi-integrable couplings. An application to the AKNS spectral problem gives bi-integrable couplings with Hamiltonian s...
متن کاملNonlinear continuous integrable Hamiltonian couplings
Based on a kind of special non-semisimple Lie algebras, a scheme is presented for constructing nonlinear continuous integrable couplings. Variational identities over the corresponding loop algebras are used to furnish Hamiltonian structures for the resulting continuous integrable couplings. The application of the scheme is illustrated by an example of nonlinear continuous integrable Hamiltonian...
متن کاملNon-isospectral Multi-component AKNS Equations and New Integrable Couplings
Positive and negative hierarchies of non-isospectral multi-component AKNS equations are derived from an arbitrary order matrix spectral problem. Moreover, new non-isospectral multi-component integrable couplings of the resulting soliton hierarchies are constructed by enlarging the associated matrix spectral problem. Mathematics Subject Classification: 35Q58
متن کاملIntegrable Couplings, Variational Identities and Hamiltonian Formulations
We discuss Hamiltonian formulations for integrable couplings, particularly biand tri-integrable couplings, based on zero curvature equations. The basic tools are the variational identities over non-semisimple Lie algebras consisting of block matrices. Illustrative examples include dark equations and biand tri-integrable couplings of the KdV equation and the AKNS equations, generated from the en...
متن کاملConstructing nonlinear discrete integrable Hamiltonian couplings
Beginning with Lax pairs from special non-semisimple matrix Lie algebras, we establish a scheme for constructing nonlinear discrete integrable couplings. Discrete variational identities over the associated loop algebras are used to build Hamiltonian structures for the resulting integrable couplings. We illustrate the application of the scheme by means of an enlargedVolterra spectral problemandp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TURKISH JOURNAL OF MATHEMATICS
سال: 2017
ISSN: 1300-0098,1303-6149
DOI: 10.3906/mat-1511-123